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Recent experiments at free-electron laser X-ray sources have been able to

resolve the intensity distributions about Bragg peaks in nanocrystals of large

biomolecules. Information derived from small shifts in the peak positions

augment the Bragg samples of the particle intensity with samples of its gradients.

Working on the assumption that the nanocrystal is entirely generated by lattice

translations of a particle, an algorithm is developed that reconstructs the particle

from intensities and intensity gradients. Unlike traditional direct phasing

methods that require very high resolution data in order to exploit sparsity of the

electron density, this method imposes no constraints on the contrast other than

positivity and works well at low resolution. Successful reconstructions are

demonstrated with simulated P1 lysozyme nanocrystal data down to a signal-to-

noise ratio of 2 in the intensity gradients.

1. Introduction

To reconstruct the electron density within the unit cell of a

crystal one needs to sum a Fourier series, each term associated

with one Bragg peak of a diffraction pattern. This recon-

struction process is severely under-constrained because the

data provided by the Bragg intensities determine only the

amplitudes and not the phases of the Fourier series coeffi-

cients. The so-called direct methods (Hauptman & Karle,

1953) were developed to offset this data insufficiency. All of

these methods impose additional constraints on the electron

density, the most important of which, atomicity, asserts that at

sufficient resolution the nonzero density regions are sparse in

the unit cell. But because data at atomic resolution are rarely

achieved with complex structures, the application of standard

direct methods has been largely limited to small-molecule

crystals.

An important new perspective on the crystallographic

phase problem was brought to light by Sayre (1952). His

proposal applies to the case of molecular crystals, that is,

where the motif in each unit cell has an integrity even in

isolation. The continuous diffraction intensity of the motif is

then well defined, and the Bragg peak intensities represent

discrete samples of the continuous pattern. By invoking

Shannon’s sampling theorem, Sayre argued that while the

Bragg samples are insufficient to reconstruct the continuous

intensity, augmenting the samples to include half-integral

lattice positions would be sufficient. In the case of a centro-

symmetric motif, i.e. a molecule with inversion symmetry, the

phase of the Fourier transform is just a sign whose changes

could then be easily determined from the surfaces where the

continuous intensity vanishes.

In the decades following Sayre’s four-paragraph paper, his

proposal has been developed in several ways. Firstly, Millane

exploited the automatic existence of intensity samples

between Bragg peak positions when the motif has non-

crystallographic symmetry (Millane, 1993), as in the case

of a virus crystal. This application of symmetry is closer in

spirit to Sayre’s proposal than earlier phase-refinement

schemes that did not consider fractionally indexed Fourier

samples and instead imposed non-crystallographic symmetry

as a constraint (Main & Rossmann, 1966; Crowther, 1969;

Bricogne, 1974). Secondly, the reconstruction of phase

from a sufficiently sampled intensity, even in the non-

centrosymmetric case, is a much studied constraint problem

for which we now have efficient, systematic solution methods

(Thibault & Elser, 2010).

David Sayre was clearly inspired by the pioneering hemo-

globin work of Perutz and co-workers (Perutz, 1954), where

continuous changes in the Bragg intensities induced by swel-

ling of the crystal lattice were measured. If the structure of the

molecule is largely unchanged in the swelling process, a not

unreasonable assumption, then the intensity variations

represent gradients of the molecular intensity. The assignment

of signs to particular real-valued Fourier amplitudes made

possible by this approach contributed to one of the first

successes of structural biology.

In this paper we present a systematic direct phasing method

that extends the strategy of Perutz and co-workers. Whereas

swelling of the crystal gives access to just one mode of

intensity variation, the new method utilizes samples of all

three gradient components of the continuous molecular

intensity. This more complete gradient information can be

inferred from small shifts in the peak positions when the
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crystal is small. The detection of such shifts is for the first time

feasible with X-ray free-electron lasers, where the high

intensity of the source has produced diffraction signals from

nanocrystals comprising as few as 103 unit cells (Chapman et

al., 2011).

2. Definition of a nanocrystal

To keep the analysis simple, in this study we consider only

nanocrystals whose macroscopic forms would have only one

particle, typically one molecule, per unit cell. That is, our

nanocrystals will have electron densities generated as trans-

lates of a particle density ~��ðrÞ by a subsetN of vectors of some

Bravais lattice:

�nanoðrÞ ¼
P

n2N

~��ðr� nÞ: ð1Þ

As most protein molecules have no symmetry, in the case of

protein nanocrystals this definition restricts our analysis to

proteins that crystallize in space group P1.

Proteins often crystallize with higher-symmetry space

groups by forming more symmetrical unit-cell motifs from

multiple molecules. It might seem that this case reduces to the

single-molecule case when the aggregate molecular motif is

treated as a single particle. However, there is non-uniqueness

in the definition of the particle, with each choice giving a

different continuous diffraction intensity that the nanocrystal

data are supposed to provide access to. Nanocrystals gener-

ated by translations of the non-uniquely defined particle are

identical in the bulk, differing only on the surface. Thus not

only does the multiple-molecule case present new challenges,

this case highlights a sensitivity to the nanocrystal surface

structure that even the single-molecule case is not immune to.

We examine this issue next.

Fig. 1 shows two electron-density sections of lysozyme at

low resolution. The image on the right shows a single mole-

cule, as it would appear in isolation, while the image on the left

shows parts of different molecules translated so as to lie within

the same unit cell of a P1 crystal. A physical nanocrystal, say

of size 3� 3� 3 unit cells, would be built from translates of a

physical molecule and correspond to the image shown in Fig.

2. One could also construct a density by applying the same set

of translations to the unit cell shown on the left in Fig. 1; the

result is shown in Fig. 3. Clearly the physical (Fig. 2) and

unphysical (Fig. 3) nanocrystals are indistinguishable in their

interiors and differ only at their surfaces. Our analysis of

nanocrystal diffraction patterns, based on the model expressed

by equation (1), will be able to distinguish between the two

unit-cell motifs (physical and unphysical) because these have

different continuous-intensity patterns as shown in Fig. 4.
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Figure 1
Two electron-density maps of lysozyme. Right, the single-molecule
density ~�� and its relation to the unit cell of the crystal; left, parts of
different molecules translated to lie within one unit cell together
comprise the density �.

Figure 2
Section of a 3� 3� 3 nanocrystal formed from translates of a physical
molecule (Fig. 1, right).

Figure 3
Same as Fig. 2 but for translates of an unphysical unit-cell motif (Fig. 1,
left).

Figure 4
Continuous intensities corresponding to the two unit-cell motifs of Fig. 1.
The white points give the locations of the Bragg peaks.



The intensities (Fig. 4) of the two unit-cell motifs (Fig. 1)

agree at all the Bragg peak positions but deviate already in the

gradients at these points. Our reconstruction method relies on

an accurate determination of these gradients from nanocrystal

diffraction. However, we have seen that the corresponding

nanocrystals (Figs. 2 and 3) differ only at their surfaces. The

converse side of this observation is that any systematic

modification of the nanocrystal surface will compromise the

successful application of our method. Such modifications

might include significant rotations/translations or enhanced

thermal motion of the surface-layer molecules and cofactor

binding at the surface. Since the surface equilibrium structure

of protein nanocrystals is poorly understood at the present

time, the viability of our method needs to be put to the test

empirically, by extracting the intensity gradients as described

in the next section and comparing them with the gradients of

known structures.

3. Extracting intensity gradients from diffraction data

We will be working in the reciprocal-space basis associated

with the Miller indices of the macroscopic crystal form and

with the corresponding dual or ‘fractional’ coordinates for

positions in the unit cell. For example, the relationship

between the diffraction amplitude at a Bragg peak and the

electron density is expressed as

FðqÞ ¼
R

dr�ðrÞ exp ð2�iq � rÞ; ð2Þ

where q is a vector of integers (the Miller indices) and the

integration region of r (unit cell) is a unit cube. All our

renderings of electron density will be distorted as a result of

the fractional coordinate system. However, use of this system

has no effect on our reconstruction method which makes no

use of metrical structure in the electron density.

In order to extend the definition of the Bragg amplitudes

[equation (2)] to continuous q we define the particle

unwrapping function uðrÞ which relates the particle density ~��
in equation (1) to the unit-cell electron-density function � of

equation (2):

�ðrÞ ¼ ~��½uðrÞ�: ð3Þ

The unwrapping function uðrÞ in effect undoes the lattice

translations that move every piece of the particle into a single

unit cell. A comparison of these densities is shown in Fig. 1.

We now replace equation (2) with

FðqÞ ¼
R

dr ~��½uðrÞ� exp ½2�iq � uðrÞ� ð4Þ

¼
R

dr �ðrÞ exp ½2�iq � uðrÞ� ð5Þ

and obtain an expression for the single-particle diffraction

amplitude valid at arbitrary q. At integral q equations (2) and

(5) agree because uðrÞ and r always differ by an integer vector.

However, the gradient of the new amplitude,

rFðqÞ ¼ 2�i
R

dr uðrÞ�ðrÞ exp ½2�iq � uðrÞ�; ð6Þ

is changed by the unwrapping function even at integral q. As

we shall see below, the nanocrystal diffraction intensity

provides access to the gradient of the single-particle intensity

at the Bragg peak samples:

rIðqÞ ¼ rjFðqÞj2 ¼ 4�Im½FðqÞG�ðqÞ�; ð7Þ

where we have introduced a new vector of amplitudes valid at

integral q:

GðqÞ ¼
R

dr uðrÞ�ðrÞ exp ð2�iq � rÞ: ð8Þ

According to our definition [equation (1)], the diffraction

intensity of the nanocrystal is

InanoðqÞ ¼ jSðqÞj
2IðqÞ; ð9Þ

where

SðqÞ ¼
P

n2N

exp ð2�iq � nÞ ð10Þ

is the structure factor associated with the lattice translations

that generate the nanocrystal. Whereas the details of the

structure factor SðqÞ depend on the set N that defines the

nanocrystal, the following general characteristics apply to the

structure factor of any nanocrystal of sufficient size: (i) it has

the periodicity of the reciprocal lattice and (ii) its magnitude is

a symmetric function of the deviation �q from the nearest

Bragg vector and decays rapidly with the magnitude of �q. In

free-electron laser experiments (Chapman et al., 2011) the

nanocrystal data will be collected from a very large ensemble

of nanocrystals, all of which should differ only in the specific

set N . From the experiments we therefore obtain

IexpðqÞ ¼ sðqÞIðqÞ; ð11Þ

where

sðqÞ ¼ hjSðqÞj2i ð12Þ

is the average crystal shape function of the nanocrystal

ensemble. Like each individual structure factor, the shape

function is periodic and strongly peaked at the Bragg peak

positions. Its width is of the order of the reciprocal nanocrystal

diameter (number of unit cells).

Spence and co-workers have proposed using equation (11)

directly, that is, dividing out the average crystal shape function

to obtain the particle intensity (Spence et al., 2011). However,

the small width of the shape function limits the window to the

particle intensity to small neighborhoods about the Bragg

peak positions, and the straightforward application of this

approach is problematic. Our method is to use the small width

of the shape function as justification for the following

approximation of the intensity about a Bragg peak q0:

IexpðqÞ ’ sðqÞ Iðq0Þ þ ðq� q0Þ � rIðq0Þ
� �

: ð13Þ

In a macroscopic crystal, where the width of sðqÞ cannot be

resolved, the product sðqÞðq� q0Þ is effectively zero and the

second term in equation (13) is negligible. The procedure then

is to integrate IexpðqÞ about q0 and thereby obtain the Bragg

sample of the particle intensity Iðq0Þ (scaled by the integral of

the shape function). In the case of nanocrystals one can hope

to go one step further by also including the gradient of the

particle intensity in the fit to the data.
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The qualitative manifestation of the gradient term correc-

tion is to shift Bragg peaks in directions that increase the

particle intensity. We can use this as the basis of a fitting

scheme for extracting both the values and gradients of the

particle intensity. The first task is to obtain a good estimate of

the shape function sðqÞ up to an irrelevant scale factor. This

can be done by averaging several strong Bragg peaks after

applying shifts to center them at a precise Bragg peak position,

q0. Because the shape function is symmetric, the shifts are

given as the average of q� q0 weighted by intensity. Once a

high-quality shape function is obtained, it is used to fit each

Bragg peak intensity distribution according to equation (13).

Assuming that the error in the fit is dominated by uncorre-

lated noise in IexpðqÞ rather than errors in the shape function, a

least-squares procedure would be applied to samples q in the

neighborhood of each peak. The result of this data-reduction

scheme is a list of particle intensity values and gradients at

each of the Bragg peaks; an example is given in Table 1.

An intensity data set augmented by gradient information, as

in Table 1, overcomes Sayre’s sampling-theorem deficit (Sayre,

1952) by a generous amount. Recall that without the gradient

information the reconstruction of the particle was under-

constrained by a factor of two. Now, assuming the gradients

can be determined with sufficient accuracy, the fourfold

increase in the number of data implies the reconstruction is

over-constrained by a factor of two. A reconstruction algo-

rithm that uses the new data is described in the following two

sections.

Since so much depends on the accurate determination of

the ensemble-averaged nanocrystal intensity IexpðqÞ, in parti-

cular its distribution about Bragg peaks, we finish this section

on this topic. Single-shot free-electron laser data give Ewald-

sphere slices of the intensity of individual nanocrystals. These

have to be assigned an orientation relative to a fixed reciprocal

lattice with a precision corresponding to the angular width of

the Bragg peaks furthest from the origin. Likelihood-based

methods, such as the EMC algorithm (Loh & Elser, 2009), can

achieve high-quality orientation classification even when the

Ewald-sphere slice has poor signal. However, in the classifi-

cation of data from one nanocrystal the likelihood function

should be derived from the specific structure factor of that

same nanocrystal, which is not available. What can be done

instead is to use the ensemble-averaged shape function sðqÞ as

a proxy for the nanocrystal-specific jSðqÞj2. Given the strong

symmetry constraints on these two functions (same periodi-

city, centrosymmetry about Bragg positions) they should lead

to almost identical likelihood functions on the orientation,

especially when the data contain signal at multiple peaks.

The nanocrystal-intensity-averaging and particle-intensity-

gradient-extraction procedures can be validated with experi-

ments on particles of known structure. However, the cause of

an unsuccessful outcome might not be the data-reduction

procedure, as discussed above, but nanocrystal surface effects

as described in the previous section.

4. Four-replica reconstruction scheme

In the previous section we saw that nanocrystal diffraction

data provide the following constraints on the particle Fourier

transform F and its vectorial supplement G:

jFðqÞj ¼ AðqÞ; ð14Þ

Im FðqÞG�ðqÞ½ � ¼ AðqÞBðqÞ; ð15Þ

where

AðqÞ ¼ ½IðqÞ�1=2; ð16Þ

BðqÞ ¼
1

4�

rIðqÞ

½IðqÞ�1=2
: ð17Þ

The data constraints [equations (14), (15)] at different q are

independent and are easily satisfied if the four complex

numbers F and G at each q can be treated as independent. We

can achieve this by defining in addition to the density trans-

form

FðqÞ ¼
R

dr �ðrÞ exp ð2�iq � rÞ ð18Þ

the transform

GðqÞ ¼
R

dr RðrÞ exp ð2�iq � rÞ; ð19Þ

and then imposing the constraint

RðrÞ ¼ uðrÞ�ðrÞ ð20Þ

at each r in the unit cell. Assuming for now the unwrapping

function uðrÞ is known, equation (20) is a linear constraint and

also easy to satisfy.

The four functions � and R are ‘replicas’ in the sense that

from any one of them we essentially can infer any of the

others. By granting independence to the replicas the data

constraints that apply to their Fourier transforms are easily

satisfied. Some sections of the unwrapping function and

replicas for the lysozyme molecule are shown in Fig. 5.

4.1. Constraint projections

To turn our reconstruction problem into an exercise in

numerical constraint satisfaction, we first have to define the

space of variables. Suppose the available data (intensities and

gradients) are contained in the Miller-index set

Q ¼ fðh; k; lÞ: jhj � N; jkj � N; jlj � Ng ð21Þ
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Table 1
Some intensities and intensity gradients of the lysozyme molecule.

h k l I @hI @kI @lI

0 0 0 100.00 0.00 0.00 0.00
1 0 0 2.51 �25.64 �4.83 �8.30
0 1 0 0.41 �0.18 �11.48 4.69
0 0 1 1.38 �4.89 6.15 �19.14
1 1 0 0.13 �1.37 �0.89 �1.10
1 �1 0 0.21 �1.77 0.67 �1.03
1 0 1 0.22 �0.56 �0.21 �0.17
1 0 �1 0.08 2.10 1.43 �2.15
0 1 1 0.01 0.35 0.11 0.46
0 1 �1 1.38 1.27 �0.62 2.62



for some N. We would then define the four complex-valued

functions F and G on four cubic grids of size M ¼ 2N þ 1; the

discrete Fourier transforms of these (Friedel-symmetric)

functions give us the four real-valued functions � and R

sampled on grids also of size M in the unit cell. The two sets of

functions are completely equivalent representations of the

structure, with one set tailored for the data constraints

[equations (14), (15)] and the other to the replica-consistency

constraint [equation (20)]. Our reconstruction algorithm is

based on projections and requires a definition of distance

between one configuration of variables ðF;GÞ and another

ðF 0;G0Þ, or their Fourier counterparts. We will use the L2

distance

�2 ¼
P
q2Q

jF 0ðqÞ � FðqÞj2 þ �2jG0ðqÞ �GðqÞj2 ð22Þ

¼
1

M3

X
r2Q=M

j�0ðrÞ � �ðrÞj2 þ �2jR0ðrÞ � RðrÞj2 ð23Þ

which allows for adjusting the weighting of the gradient part of

the configuration by the dimensionless metric scale parameter

�. This parameter can be removed from the definition of the

distance by rescaling G and its Fourier transform R, the result

of this being a rescaling of the unwrapping function and the

gradient data:

u! �u; B! �B: ð24Þ

All subsequent formulas will assume this rescaling has been

made.

4.1.1. Replica-consistency projection. There is one replica-

consistency constraint [equation (20)] at each grid point r

and it involves only the four replicas ½�ðrÞ;RðrÞ� at that point.

We will therefore omit reference to r in the following. The

projection ð�;RÞ ! ð�0;R0Þ to the constraint R0 ¼ u�0 is

geometrically a projection to a line in a four-dimensional

space and is given by the stationary point of the distance to

which a Lagrange multiplier term has been added:

j�0 � �j2 þ jR0 � Rj2 þ 2m � ðR0 � u�0Þ: ð25Þ

Stationarity of equation (25) gives the pair of equations

�0 ¼ �þm � u; ð26Þ

R0 ¼ R�m; ð27Þ

which together with the equation R0 ¼ u�0 allow us to elim-

inate all the primed variables to obtain the following equation

for the Lagrange multiplier:

mþ ðm � uÞu ¼ R� u�: ð28Þ

Solving for m in equation (28),

m ¼ R�
�þ u � R

1þ u � u

� �
u; ð29Þ

and comparing this solution with equation (27) we obtain

R0 ¼
�þ u � R

1þ u � u

� �
u; ð30Þ

the coefficient of u being the projected �0.
It is easy to modify this projection so that it imposes posi-

tivity of the electron density as well. In this case, the constraint

set is geometrically the half-line where �0 is positive. If the

projection computed above gives a point with negative �0, then

the nearest point of the true constraint set should be the

endpoint of the half-line, or �0 ¼ R0 ¼ 0.

4.1.2. Projection to the data constraints. In analogy with

the replica-consistency constraints, the data constraints

[equations (14), (15)] apply, independently for each q, to the

four complex numbers ½FðqÞ;GðqÞ�. We omit reference to q in

the following.

Unlike the replica-consistency constraints, the data con-

straints are nonlinear and projecting to the non-convex set

requires more work. We begin our calculation of the projec-

tion ðF;GÞ ! ðF 0;G0Þ by fixing F and F 0 and finding a

stationary point with respect to G0 of the Lagrange-multiplier

augmented distance

jG0 �Gj2 þ 2n � ImðF 0G0�Þ � AB½ �; ð31Þ

where n is the real-valued multiplier. The value of G0 at the

stationary point,

G0 ¼ Gþ iF 0n; ð32Þ

when substituted into the constraint equation

ImðF 0G0�Þ ¼ AB ð33Þ

gives the following solution for the Lagrange multiplier:

n ¼ ImðF 0G�Þ=A2
� B=A: ð34Þ
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Figure 5
Top panels, x and y components of the unwrapping function u for the
lysozyme molecule. The top left panel shows ux is negative at the right
side of the unit cell because the molecule wraps around the cell. Lower
panels, x and y components of R ¼ u� (two ‘replicas’ of the lysozyme
density).



We note that our solution [equation (32)] for G0 is unique

because the constraint on this variable is linear.

The next step is to minimize the distance

dð’Þ ¼ jF 0 � Fj2 þ jG0 �Gj2

¼ jF 0 � Fj2 þ jImðF 0G�Þ=A� Bj2 ð35Þ

with respect to the phase angle of F 0 ¼ A exp ði’Þ. The second

term in dð’Þ was expressed in terms of F 0 by using equations

(32) and (34) and the constraint jF 0j ¼ A. Writing the two

terms of the distance explicitly as a function of ’ we obtain

jF 0 � Fj2 ¼ �AF exp ð�i’Þ þ c:c:þ � � � ; ð36Þ

jG0 �Gj2 ¼ �iB �G exp ð�i’Þ �
1

4
G �G exp ð�i2’Þ

� �
þ c:c:

þ � � � ; ð37Þ

where c.c. denotes the complex-conjugate of the preceding

expression and � � � represents ’-independent terms. Defining

the constants

a exp ði�Þ ¼ AF þ iB �G; ð38Þ

b exp ði�Þ ¼
1

4
G �G; ð39Þ

the distance takes the compact form

dð’Þ ¼ �a cos ð’� �Þ � b cos ð2’� �Þ þ � � � : ð40Þ

Since the constraint on F 0 is nonlinear, this distance can have

more than one stationary point, depending on the ratio b=a

and the angles � and �. At the core of this projection we thus

require the function

 ðc; �Þ ¼ argmin
 0
� cos ð 0Þ � c cos ð2 0 � 2�Þ½ � ð41Þ

of two real arguments. The argument c is non-negative and it is

enough to consider j�j � �=2 since  has periodicity � in this

argument. Fig. 6 shows a plot of  ðc; �Þ. Limiting values are

 ð0; �Þ ¼ 0 and  ð1; �Þ ¼ �; there is a discontinuity at

� ¼ 	�=2 for c> 1=4.

Below is a summary of the projection to the data constraint:

(i) Apply discrete Fourier transforms to each of the four

replicas ð�;RÞ to obtain ðF;GÞ.

(ii) Determine a, �, b and � from equations (38), (39).

(iii) Obtain the phase of F 0 as ’ ¼ �þ  ðb=a; �=2� �Þ.
(iv) Evaluate the Lagrange multiplier n with equation (34)

and substitute into equation (32) to obtain G0.

(v) Apply the inverse Fourier transform to ðF 0;G0Þ to obtain

ð�0;R0Þ.

Steps (ii)–(iv) are applied at each q for which there are data.

In the event that the data at some q are missing or unreliable,

the corresponding amplitudes ðF;GÞ are left unchanged.

5. Iterative reconstruction algorithm

Our reconstruction algorithm uses the alternating directions

method of multipliers (ADMM) iteration scheme (Boyd et al.,

2011) for the two constraint projections described in the

preceding section. Combining the four replicas into a single

symbol, q ¼ ð�;RÞ, the ADMM scheme is to cyclically iterate

the following:

q1 ¼ P1ðq2 þ �zÞ; ð42Þ

q02 ¼ P2ðq1 � �zÞ; ð43Þ

z0 ¼ zþ q02 � q1: ð44Þ

The two constraint projections are denoted P1 and P2, one of

which implements the replica-consistency constraint while the

other projects to the data constraint. We have chosen P1 to be

the replica-consistency projection, although the other choice

(which gives an inequivalent algorithm) was also found to

perform well. The iteration rule updates three sets of vari-

ables: q1, q2 and z. The first two, by construction, satisfy

constraints (1) and (2), respectively. When we have q1 ¼ q02
both constraints are satisfied, there is no change in z and the

iteration arrives at a fixed point. During the search for the

fixed point, z grows in proportion to the current constraint

incompatibility and provides a mechanism for the iterations to

escape near-solutions of the type where the distance between

the two constraint sets is a local minimum (but nonzero). The

strength of the incompatibility on the next round of projec-

tions is controlled by the dimensionless parameter �. It is clear

that with � set to zero the ADMM scheme reduces to the

simple alternation of projections. In the Appendix we show

that � ¼ 1 is equivalent to the Douglas–Rachford algorithm,
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Figure 6
Contour plot of the function  ðc; �Þ defined in equation (41). Blue
represents negative values, positive values are yellow. The function is zero
along the c ¼ 0 axis and along the left and right sides (� ¼ 	�=2) below
c ¼ 1=4. For large c the function approaches the simple linear function
 ðc; �Þ ’ �.



which is the form taken by the Fienup (or difference-map)

iteration with � ¼ 1 (Fienup, 1982; Elser, 2003). In all the

reconstructions presented below we have used � ¼ 0:5. Every

reconstruction was initialized with z ¼ 0 and q2 set to a

random set of replicas that have been projected to the data

constraint. We monitor progress through the distance � ¼
kq02 � q1k given by equation (23).

5.1. Particle unwrapping

Reconstructions fall into two classes, depending on whether

the particle unwrapping function uðrÞ is known or unknown.

When the particle is compact and the fraction of empty or

solvent-occupied space is large, it is usually safe to assume the

particle fits inside the unit-cell parallelepiped without ‘wrap-

ping around’. In that case we may use the trivial unwrapping

function

uðrÞ ¼ �r; r 2 Q=M: ð45Þ

However, in low-solvent-fraction crystals it will often be the

case that the particle cannot be centered without wrapping

around the parallelepiped. Moreover, in these cases there will

be close interparticle contacts making the definition of the

particle perimeter ambiguous even when the electron density

is well reconstructed. The P1 crystal form of lysozyme (Wang

et al., 2007) used in our simulations, with 27% solvent fraction,

is a good example of this situation. The particle-unwrapping

method described in this section was developed over the

course of simulations with this molecule but is completely

general.

Our unwrapping method begins with the trivial function

[equation (45)] and refines it adiabatically based on averages

of the reconstructed electron density. The update rule for uðrÞ

is based on a simple representation by ‘wrapping surfaces’.

There are three wrapping surfaces, one associated with each

coordinate of the unit cell: Xðy; zÞ, Yðx; zÞ, Zðx; yÞ. Each

surface specifies where the corresponding component of the

wrapping function changes discontinuously by 	�. Examples

for the case of lysozyme are shown in the top panels of Fig. 5.

To make a precise definition we use the shifted modulus

operation modð1;XÞ, where the statement

x0 ¼ x modð1;XÞ ð46Þ

means that x0 is the unique translate of x by an integer that lies

in the half-open interval ðX � 1;X�. The x component of the

unwrapping function is defined as

uxðx; y; zÞ ¼ � x modð1;Xðy; zÞÞð Þ ð47Þ

and analogously for the other two components. For the trivial

unwrapping function [equation (45)] all three surfaces are flat

and have values X ¼ Y ¼ Z ¼ 1=2.

Our representation of the unwrapping function is not the

most general possible, but is probably general enough for most

applications. It is limited by having only one discontinuity on

any line of length 1 parallel to one of the unit-cell axes. For

example, the single discontinuity of uxðx; y; zÞ as x ranges from

�1=2 to þ1=2 (with y and z fixed) asserts that the identity of

the particle changes exactly once per unit cell when this line is

extended indefinitely in the crystal. An example of a crystal

structure requiring a more complex unwrapping function is

shown in Fig. 7. The S-shaped particle in this structure packs in

such a way that its unwrapping function has one component

with three discontinuities per unit cell.

To specify the update rule for the unwrapping function we

can focus on the update of the wrapping surfaces because

these define the unwrapping function through equation (47).

We refine the surfaces by a heuristic that has some similarities

with the shrink-wrap procedure (Marchesini et al., 2003) of

refining particle support in the non-crystalline case. However,

we note that modifying the wrapping surfaces does not change

the volume available to the particle, that is, add or remove

constraints in the reconstruction. The wrapping surfaces are

additional degrees of freedom that must be reconstructed

from the available data (subject to ambiguity where the

density vanishes). We reconstruct these surfaces, in analogy

with the shrink-wrap method, by imposing a lower limit on the

scale of their variation and refining the variations by the

particle contrast that passes closest to the surfaces.

Our heuristic rule for moving the wrapping surface by

�Xðy; zÞ is based on the asymmetry between the density

�ðXþ; y; zÞ just ‘above’ the surface and the density �ðX�; y; zÞ

just ‘below’ it. In the extreme case, where the density on one

side of the surface is exactly zero, the surface can be moved by

one grid spacing without violating any new constraints

because none of the replicas are thereby changed. On the

other hand, if the density on the other side of the surface is

positive, then moving the surface and thereby increasing the

volume available at the particle boundary can only help in

satisfying constraints. Both the direction for moving the

surface and the strength of the asymmetry are captured by a

local force computed as follows:

fxðy; zÞ ¼ � X�ðy; zÞ; y; zð Þ � � Xþðy; zÞ; y; z
� 	
 �

: ð48Þ

The superscripts � and þ denote grid points on either side of

X and the angle brackets represent a block average of several

ADMM iterations. After each block average, a Gaussian low-

pass filter is applied to fxðy; zÞ and Xðy; zÞ is incremented by a
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Figure 7
Example of an S-shaped particle whose unwrapping function has more
than one discontinuity per crystal axis. Along the vertical edge of the unit
cell (black square) we see that uy has three discontinuities (solid circles).



positive multiple of the smoothed force function. The other

two surfaces are updated analogously.

6. Reconstruction experiments with simulated P1
lysozyme data

We tested our direct phasing method with simulated data

derived from the P1 lysozyme structure of Wang et al. (2007), a

low-solvent-fraction crystal comprising 1001 non-hydrogen

atoms in a single, 129-residue protein molecule. The (macro-

crystal) Bragg intensities for this structure have been

measured to very high resolution (0.65 Å, 187 165 unique

reflections), making this also a rare instance where atomicity-

based direct methods can be successfully applied to a protein

(Deacon et al., 1998). In our nanocrystal direct phasing

simulation, by contrast, we truncated the data to a much lower

resolution to reflect the as yet unknown reliability of intensity-

gradient extraction from nanocrystal data. We used Miller-

index cutoff N ¼ 17 for a data set comprising 21437� 4

unique intensities and gradients. Moreover, a Gaussian low-

pass filter was applied to the data so as not to introduce

negative electron density as a result of series truncation. The

actual resolution of the simulated data is therefore quite low,

about 2 Å as measured by the fading of the filtered intensities

shown in Fig. 8. The electron density reconstructed with the

known phases at this resolution is shown in Fig. 9 and is

sufficient to identify the secondary structure elements of the

protein.

Because errors in the extraction of the gradients will be the

dominant source of experimental uncertainty, for simplicity we

introduced noise only via the reduced-gradient data BðqÞ. We

used uncorrelated additive Gaussian noise, uniform in q; the

signal-to-noise ratios (SNRs) we quote are root-mean-square

measures applied to B and the noise that was added. Also for

the sake of simplicity the metric scale parameter was fixed at

� ¼ 3 in all the experiments. The quality of reconstructions at

high noise might have been improved with a smaller �, which

controls the relative weight of the gradient constraints, that is,

constraints on G relative to F. A uniform-density particle

whose shape is a unit-diameter sphere in the fractional coor-

dinate system will have equal power in F and each component

of G when � ¼ 201=2.

Whereas our simulations made use of all the q 6¼ 0 data in

our truncated set, in practice one might want to ignore those

gradient data with uncertainty above some threshold. In such

cases one could still use the Bragg intensity data AðqÞ as a

single constraint on FðqÞ, leaving GðqÞ unchanged.

All simulations were performed on a laptop computer

running software written in Mathematica 7.0.

6.1. Known wrapping

When given the unwrapping function from the known

protein envelope, the reconstruction algorithm was able to

determine the phases quickly, apparently without having to do

any exploration. The iteration series of the ADMM updates �,

shown in Fig. 10, is almost independent of the random initial

density. A steady state is reached after about 50 iterations,

whereupon � fluctuates about a value that is set by the SNR.

After 100 iterations we calculated the standard phase figure-

of-merit (FOM)

hcos �’i ¼

P
q 6¼0 IðqÞ cos �’ðqÞP

q 6¼0 IðqÞ
; ð49Þ

where �’ðqÞ is the difference between the true and recon-

structed phase, and the result is maximized with respect to a

relative translation. Apparently the unwrapping function was
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Figure 8
Low-pass filtered intensity data (A, on left) and intensity-gradient data
(B, on right) in the h ¼ 0 plane. Positive data are rendered yellow,
negative values are blue.

Figure 9
Top, electron density of lysozyme at the resolution used in this study.
Bottom, reconstruction with SNR ¼ 2 and known unwrapping function,
rendered at slightly lower resolution.



sufficiently enantiomer-specific that the only variability

encountered in the reconstructions was a small translation.

Table 2 gives FOM values as a function of SNR for three

experiments at each noise value. The reconstructed electron-

density contours for SNR> 2 are essentially indistinguishable

from the noise-free contours in the top panel of Fig. 9. The

lower panel of the same figure shows a reconstruction with

SNR ¼ 2 and some deterioration at the level of secondary

structure features.

6.2. Unknown wrapping

The reconstruction of a tightly packed particle, such as P1

lysozyme, is much more difficult when the unwrapping func-

tion is unknown. We have used the force-heuristic described

above, starting with three flat wrapping surfaces and updating

them every ten iterations of the ADMM density reconstruc-

tion. An example of the evolution of the surfaces in one

reconstruction is shown in Fig. 11. Many modifications of the

surfaces are explored before the algorithm discovers the

correct ones. In the case of lysozyme the surfaces define the

enantiomer; the handedness of the reconstruction is randomly

determined by the initial electron density.

Plots of the replica update magnitudes � for SNR 20, 10

and 5 are shown in Fig. 12. The sudden drop in �, coinciding

with the discovery of the wrapping surfaces, is stochastic and

in one case required 180 updates of the surfaces using our

heuristic. Another difference, relative to the known unwrap-

ping function case, is the higher fluctuating level of � in the

post-solution-discovery steady state. We believe this is due to

the smoothness of our wrapping surfaces, as imposed by
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Figure 11
Evolution of the three wrapping surfaces (color contours) in a lysozyme
reconstruction. Shown are the surfaces after update 5 (top row), 10, 20, 50
and 100 (bottom row).

Figure 12
Update magnitudes (�) for lysozyme reconstructions with unknown
unwrapping function and SNR ¼ 20; 10; 5. The regular peaks in � every
ten iterations reflect the update schedule of the wrapping surfaces.

Table 2
Phase figure-of-merit (FOM) as a function of SNR in the gradient data, in
lysozyme reconstructions (three trials) with known unwrapping function.

SNR hcos �’i

20 0.99, 0.99, 0.99
10 0.98, 0.98, 0.98

5 0.95, 0.95, 0.95
2 0.83, 0.85, 0.86
1 0.40, 0.50, 0.55

Figure 10
Update magnitudes (�) for lysozyme reconstructions with known
unwrapping function and SNR ¼ 20; 10; 5; 2; 1 (the highest SNR has
the lowest final �).



filtering the force; the true surfaces have sharper features.

Reducing the smoothness of the surfaces should reduce � in

the phased particle and extend the reach of our method to

higher noise. However, this comes at the expense of enlarging

the search space of wrapping surfaces. In Fig. 13 we compare

low-resolution contours of an SNR 5 reconstruction with the

true density. Phase FOM values are given in Table 3; as

expected they are somewhat lower than the corresponding

values for the known unwrapping function case.

7. Conclusions

Putting aside for the moment the practicality and reliability of

experimental methods for extracting intensity-gradient data

from nanocrystal diffraction, the reconstruction method we

have developed (i) is directly based on the available

constraints, (ii) can be efficiently implemented by an iterative

algorithm, and (iii) has been demonstrated in simulations even

in the presence of significant noise. There is thus no theoretical

obstacle in attempting a proof-of-principle experiment, say

with lysozyme where the single-particle model used in this

work is most likely applicable.

The main challenge for the first experiments will be to

achieve high fidelity in the three-dimensional assembly of the

nanocrystal-ensemble intensity from noisy and non-oriented

two-dimensional sections. There has been much recent

progress on this problem (Kirian et al., 2010). However, for the

direct phasing work the demands on the quality of the three-

dimensional intensity will be much greater than that required

for extracting the integrated Bragg intensities. Still, it should

be possible to validate procedures for extracting intensity

gradients from peak shifts by working with known structures.

A greater challenge for the future is generalizing the

reconstruction algorithm to allow for multiple particles per

unit cell. The existence of multiple particles provides a natural

mechanism for the nanocrystal to assume a surface structure

that goes beyond the model used in the present work. An

example of the phenomenon is shown in Fig. 14. Here two

copies of a non-symmetric particle (triangle) are arranged in

the unit cell so as to give the crystal a �-rotation symmetry.

However, not both copies need be present at the surface and

depending on the crystal facet just one or the other might be

the preferred form. This choice is a new degree of freedom

that an extension of the present work would have to address.

APPENDIX A
Equivalence of iteration schemes

To see the equivalence of the ADMM iteration with � ¼ 1 and

the � ¼ 1 difference map (Fienup’s hybrid input–output) we

group the three updates as follows:

q02 ¼ P2ðq1 � zÞ; ð50Þ
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Figure 14
Cartoon of a crystal structure comprising two identical particles
(triangles) per unit cell, but where the cell occupancy of the particles
varies along the surface of the nanocrystal.

Figure 13
Top, electron density of lysozyme at reduced resolution. Bottom,
reconstruction with SNR ¼ 5 and unknown unwrapping function.

Table 3
Same as Table 2 but for reconstructions with unknown unwrapping
function.

SNR hcos �’i

20 0.98, 0.97, 0.98
10 0.97, 0.96, 0.96

5 0.93, 0.95, 0.93



z0 ¼ zþ q02 � q1; ð51Þ

q01 ¼ P1ðq
0
2 þ z0Þ: ð52Þ

To start the iteration with this grouping we would initialize q1

and z and cycle through the equations in the order written.

Now define the variable x ¼ q1 � z, which we would initialize

accordingly, and rewrite the three steps of the ADMM itera-

tion with x replacing z:

q02 ¼ P2ðxÞ; ð53Þ

q01 � x0 ¼ q1 � xþ q02 � q1 ¼ q02 � x; ð54Þ

q01 ¼ P1ðq
0
2 þ q01 � x0Þ ¼ P1ð2q02 � xÞ: ð55Þ

We simplified the argument of the projection in equation (55)

by using equation (54). If we now rewrite equation (54) while

substituting the expressions for q01 and q02 from the other two

equations we see that we get an update rule that only makes

reference to x:

x0 ¼ xþ P1½2P2ðxÞ � x� � P2ðxÞ: ð56Þ

This is the difference-map update with � ¼ 1.

This work was begun in 2009 while I was a sabbatical visitor

at the Center for Free Electron Laser Science at DESY. My

remarks in the conclusions section are largely the result of

discussions with the CFEL team four years later. I thank John

Spence for bringing to my attention a particular study by

Perutz and co-workers that also exploited gradient informa-

tion. This work was supported by DOE grant No. DE-FG02-

11ER16210.
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